Functionalization of cellulose nanofibrils to develop novel ROS-sensitive biomaterials

نویسندگان

چکیده

Nanocellulose–oligoproline hydrogels, able to respond high levels of ROS and protect cells from oxidative environments, are promising candidates for the treatment chronic wounds other clinical conditions associated with ROS.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellulose fibers and nanofibrils for adhesive reinforcement

Introduction In wood industry, adhesive bonding is one of the key process steps. To ensure continuing technological progress in wood industry it is necessary to explore new possibilities of improvement in adhesive bonding. The potential routes for performance improvements suggested by a state of the art report issued by COST Action E13 Wood Adhesion and Glued Products (Dunky et al. 2002) focus ...

متن کامل

Versatile multi-functionalization of protein nanofibrils for biosensor applications.

Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils...

متن کامل

Antioxidants: Novel Approach to ROS Sensitive TRP Channels Gating Manner

Reactive Oxygen Species (ROS) trigger oxidative stress conditions which leads cellular damage. Oxidative stress is the unbalanced situation in favour to the oxidants. Free oxygen radicals, in unstable conditions, may function as signal transduction molecules. Transient Receptor Potential (TRP) channels, as Ca2+permeable cation channels, that sense environmental changes, such as pH, temperature,...

متن کامل

Modification of cellulose nanofibrils with luminescent carbon dots.

Films and hydrogels consisting of cellulose nanofibrils (CNF) were modified by covalent EDC/NHS coupling of luminescent, water-dispersible carbon dots (CDs). Quartz crystal microgravimetry with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) were used to investigate the attachment of CDs on carboxymethylated CNF (CM-CNF). As the first reported use of CD in nanocellulose produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials advances

سال: 2023

ISSN: ['2633-5409']

DOI: https://doi.org/10.1039/d2ma01056a